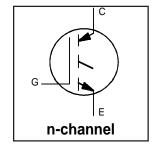
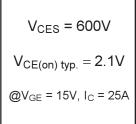
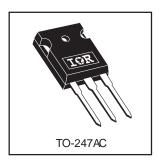
International Rectifier


IRG4PC40KPbF


Short Circuit Rated UltraFast IGBT

INSULATED GATE BIPOLAR TRANSISTOR

Features


- Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10 μ s @ 125°C, V_{GE} = 15V
- Generation 4 IGBT design provides higher efficiency than Generation 3
- Industry standard TO-247AC package
- Lead-Free

Benefits

- Generation 4 IGBTs offer highest efficiency available
- IGBTs optimized for specified application conditions

Absolute Maximum Ratings

Parameter		Max.	Units	
V _{CES}	Collector-to-Emitter Voltage	600	V	
I _C @ T _C = 25°C	Continuous Collector Current	42		
I _C @ T _C = 100°C	Continuous Collector Current	25	Α	
I _{CM}	Pulsed Collector Current ①	84		
I _{LM}	Clamped Inductive Load Current ②	84		
t _{sc}	Short Circuit Withstand Time	10	μs	
V _{GE}	Gate-to-Emitter Voltage	±20	V	
E _{ARV}	Reverse Voltage Avalanche Energy ③	15	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	65		
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)		
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.77	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount		40	
Wt	Weight	6 (0.21)		g (oz)

IRG4PC40KPbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

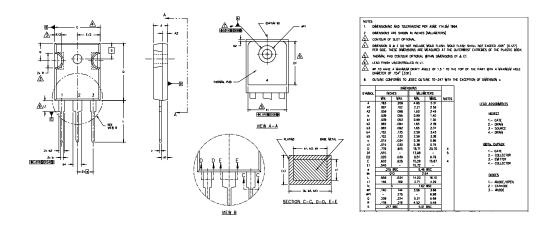
	Parameter	Min.	Typ	May	Units	Conditions	
\/		+	ιyp.	WAX.			
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18	_	_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.46	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
		_	2.10	2.6		I _C = 25A	V _{GE} = 15V
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.70	_	V	I _C = 42A	See Fig.2, 5
		_	2.14	_		I _C = 25A , T _J = 150°C	
$V_{\text{GE(th)}}$	Gate Threshold Voltage	3.0	—	6.0		V_{CE} = V_{GE} , I_C = 250 μ A	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	-13	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$	
9 fe	Forward Transconductance ®	7.0	14	_	S	$V_{CE} = 100 \text{ V}, I_{C} = 25 \text{A}$	
ICES	Zero Gate Voltage Collector Current	_	_	250	μA	V _{GE} = 0V, V _{CE} = 600V	
		_	_	2.0		V _{GE} = 0V, V _{CE} = 10V, T,	j = 25°C
		_	_	2000		V _{GE} = 0V, V _{CE} = 600V,	Г _J = 150°С
IGES	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	V _{GE} = ±20V	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	120	180		I _C = 25A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	16	24	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	_	51	77		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	30	_		
t _r	Rise Time	_	15	_	ns	$T_J = 25$ °C
t _{d(off)}	Turn-Off Delay Time	_	140	210	1115	$I_C = 25A$, $V_{CC} = 480V$
t _f	Fall Time	_	140	210		V_{GE} = 15V, R_G = 10 Ω
Eon	Turn-On Switching Loss	_	0.62	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	0.33	_	mJ	See Fig. 9,10,14
E _{ts}	Total Switching Loss	_	0.95	1.4		
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	V _{CC} = 400V, T _J = 125°C
						V_{GE} = 15V, R_G = 10 Ω , V_{CPK} < 500V
t _{d(on)}	Turn-On Delay Time	_	30	_		T _J = 150°C,
t _r	Rise Time	_	18	—		$I_C = 25A$, $V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	_	190	_	ns	V_{GE} = 15V, R_{G} = 10 Ω
t _f	Fall Time	_	150	_	Ī	Energy losses include "tail"
E _{ts}	Total Switching Loss	_	1.9	_	mJ	See Fig. 11,14
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	1600	—		V _{GE} = 0V
C _{oes}	Output Capacitance	_	130	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance		55	_		f = 1.0MHz

Notes:

- 1 Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- 2 V_{CC} = 80%(V_{CES}), V_{GE} = 20V, L = 10µH, R_G = 10Ω, (See fig. 13a)
- ③ Repetitive rating: pulse width limited by maximum junction temperature.
- ④ Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.
- ⑤ Pulse width 5.0µs, single shot.

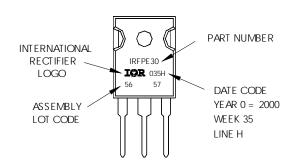

IRG4PC40KPbF

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

